Abstract

This work extends to fourth-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. The PERP benchmark comprises 7477 imprecisely known (uncertain) model parameters which have nonzero values. These parameters are as follows: 180 microscopic total cross sections; 7101 microscopic scattering sections; 60 microscopic fission cross sections; 60 parameters that characterize the average number of neutrons per fission; 60 parameters that characterize the fission spectrum; 10 parameters that characterize the fission source; and 6 parameters that characterize the isotope number densities. Previous works have used the adjoint sensitivity analysis methodology to compute exactly and efficiently all of the 7477 first-order and 27,956,503 second-order sensitivities of the PERP benchmark’s leakage response to all of the benchmark’s uncertain parameters. These works showed that largest response sensitivities involve the total microscopic cross sections, which motivated the recent computation of all of the (180)3 third-order sensitivities of the PERP leakage response with respect to these total microscopic cross sections. It turned out that some of these 3rd-order cross sections were far larger than the corresponding 2nd-order ones, thereby having the largest impact on the uncertainties induced in the PERP benchmark’s response. This finding has motivated the development of the original 4th-order formulas presented in this work, which are valid not only for the PERP benchmark but can also be used for computing the 4th-order sensitivities of response of any nuclear system involving fissionable material and internal or external neutron sources. Subsequent works will use the adjoint-based mathematical expressions obtained in this work to compute exactly and efficiently the numerical values of the largest fourth-order sensitivities of the PERP benchmark’s response to the total microscopic cross section and use them for a pioneering fourth-order uncertainty analysis of the PERP benchmark’s response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.