Abstract

In this work, we present relativistic corrections to first-order electrical properties obtained using fourth-order direct perturbation theory (DPT4) at the Hartree-Fock level. The considered properties, i.e., dipole moments and electrical-field gradients, have been calculated using numerical differentiation techniques based on a recently reported DPT4 code for energies [S. Stopkowicz and J. Gauss, J. Chem. Phys. 134, 064114 (2011)]. For the hydrogen halides HX, X=F, Cl, Br, I, and At, we study the convergence of the scalar-relativistic contributions by comparing the computed DPT corrections to results from spin-free Dirac-Hartree-Fock calculations. Furthermore, since in the DPT series spin-orbit contributions first appear at fourth order, we investigate their magnitude and judge the performance of the DPT4 treatment by means of Dirac-Hartree-Fock benchmark calculations. Finally, motivated by experimental investigations of the molecules CH(2)FBr, CHF(2)Br, and CH(2)FI, we present theoretical results for their halogen quadrupole-coupling tensors and give recommendations concerning the importance of higher-order scalar-relativistic and spin-orbit corrections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.