Abstract

We have recently expressed the structure constant of atmospheric turbulence in terms of the oceanic turbulence parameters, which are the ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of the mean-squared temperature, wavelength, Kolmogorov microscale, and link length. In this paper, utilizing this recently found structure constant and the fourth-order mutual coherence function of atmospheric turbulence, we present the fourth-order mutual coherence function to be used in oceanic turbulence evaluations. Thus, the found fourth-order mutual coherence function of oceanic turbulence is evaluated for the special case of a point source located at the transmitter origin and at a single receiver point. The variations of this special case of the fourth-order mutual coherence function of oceanic turbulence against the changes in the ratio of temperature to salinity contributions to the refractive index spectrum, the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of the mean-squared temperature, the wavelength, and the Kolmogorov microscale at various link lengths are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call