Abstract
The use of a fourth-order motion curve is proposed by Stadtfeld and Gaiser to reduce the running noise of a bevel gear set recently. However, the methodology of synthesizing the tooth surfaces was not clearly shown in the literature. In this work, we proposed a methodology to synthesize the mating tooth surfaces of a face-milling spiral bevel gear set transmitting rotations with a predetermined fourth-order motion curve and contact path. A modified radial motion (MRM) correction in the machine plane of a computer numerical control (CNC) hypoid generator is introduced to modify the pinion tooth surface. With MRM correction, an arbitrary predetermined contact path on the pinion tooth surface with predetermined fourth-order motion curve can be achieved. Parameters of MRM correction are calculated according to the predetermined contact path and motion curve. As shown by the numerical examples, the contact path and the motion curve were obtained as expected by applying the MRM correction. The results of this work can be applied to the pinion, which is generated side-by-side (for example, fixed setting method, formate method, and Helixform method) and can be used as a basis for further study on the motion curve optimizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.