Abstract

A deferred correction method is utilized to increase the order of spatial accuracy of the Crank-Nicolson scheme for the numerical solution of the one-dimensional heat equation. The fourth-order methods proposed are the easier development and can be solved by using Thomas algorithms. The stability analysis and numerical experiments have been limited to one-dimensional heat-conducting problems with Dirichlet boundary conditions and initial data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.