Abstract

Abstract This paper presents a four-stream extension of the δ-Eddington approximation by considering the higher-order spherical harmonic expansion in radiative intensity. By using the orthogonality relation of the spherical harmonic functions, the derivation of the solution is fairly straightforward. Calculations show that the δ-four-stream spherical harmonic expansion approximation can reduce the errors in reflection, transmission, and absorption substantially in comparison with the δ-Eddington approximation. For the conservative scattering case, the error of the new model is generally less than 1% for optical thickness greater than unity except for gracing incident solar beam. For nonconservative scattering cases (single scattering albedo ω=0.9), the error is less than 5% for optical thickness greater than unity, in contrast to errors of up to 20% or more under the δ-Eddington approximation. This model can also predict the azimuthally averaged intensity to a good degree of accuracy. The computational ti...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call