Abstract

In this paper we complete the following four objectives: 1. We obtain an integration by parts formula for analytic Feynman integrals. 2. We obtain an integration by parts formula for Fourier-Feynman transforms. 3. We find the Fourier-Feynman transform of a functionalF from a Banach algebra after it has been multiplied byn linear factors. 4. We evaluate the analytic Feynman integral of functionals like those described in 3 above. A very fundamental result by Cameron and Storvick [5, Theorem 1], in which they express the analytic Feynman integral of the first variation of a functionalF in terms of the analytic Feynman integral ofF multiplied by a linear factor, plays a key role throughout this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.