Abstract
Flow acoustics in pipeline is of considerable interest in both industrial application and scientific research. While well-known analytical solutions exist for stationary and uniform mean flow, only numerical solutions exist for shear mean flow. Based on potential theory, a general mathematical formulation of flow acoustics in inviscid fluid with shear mean flow is deduced, resulting in a set of two second-order differential equations. According to Fourier–Bessel theory which is orthogonal and complete in Lebesgue Space, a solution is proposed to transform the differential equations to linear homogeneous algebraic equations. Consequently, the axial wave number is numerically calculated due to the existence condition of non-trivial solution to homogeneous linear algebraic equations, leading to the vanishment of the corresponding determinant. Based on the proposed method, wave propagation in laminar and turbulent flow is numerically analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.