Abstract

This chapter deals with Fourier transforms in L1(ℝ) and in L2 (ℝ) and their basic properties. Special attention is given to the convolution theorem and summability kernels including Cesaro, Fejer, and Gaussian kernels. Several important results including the approximate identity theorem, general Parseval’s relation, and Plancherel theorem are proved. This is followed by the Poisson summation formula, Gibbs’ phenomenon, the Shannon sampling theorem, and Heisenberg’s uncertainty principle. Many examples of applications of the Fourier transforms to mathematical statistics, signal processing, ordinary differential equations, partial differential equations, and integral equations are discussed. Included are some examples of applications of multiple Fourier transforms to important partial differential equations and Green’s functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.