Abstract

Temporal diffusion spectroscopy (TDS) currently uses the oscillating gradient spin echo (OGSE) experiment to measure the spectral density of translational velocity autocorrelation at single frequencies. Due to timing restrictions imposed by the transverse relaxation, the frequency selectivity and the sampling density of OGSE are limited, especially at low frequencies. We propose to overcome this problem by adopting the principles of Fourier transform spectroscopy. The new method of Fourier transform TDS (FTDS) uses two broadband gradient waveforms with different relative delays to make the spin echo attenuation sensitive to a broad range of diffusion frequencies with different harmonic modulations and calculates the spectrum by discrete Fourier transform. The method was validated by a measurement of diffusion spectra in highly restrictive tissues of a celery stalk and provided results consistent with OGSE, however, on a denser frequency grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.