Abstract

Fourier transform-second-harmonic generation imaging is employed to obtain quantitative metrics of collagen fibers in biological tissues. In particular, the preferred orientation and maximum spatial frequency of collagen fibers for selected regions of interest in porcine trachea, ear, and cornea are determined. These metrics remain consistent when applied to collagen fibers in the ear, which can be expected from observation. Collagen fibers in the trachea are more random with large standard deviations in orientation, and large variations in maximum spatial frequency. In addition, these metrics are used to investigate structural changes through a 3D stack of the cornea. This technique can be used as a quantitative marker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.