Abstract

The classical Fourier transform on the line sends the operator of multiplication by $x$ to $i\frac{d}{d\xi}$ and the operator of differentiation $\frac{d}{d x}$ to the multiplication by $-i\xi$. For the Fourier transform on the Lobachevsky plane we establish a similar correspondence for a certain family of differential operators. It appears that differential operators on the Lobachevsky plane correspond to differential-difference operators in the Fourier-image, where shift operators act in the imaginary direction, i.e., a direction transversal to the integration contour in the Plancherel formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.