Abstract

The alkali metal monoacetylides LiCCH, NaCCH, and KCCH and their deuterium isotopologues have been investigated using Fourier transform microwave (FTMW) spectroscopy in the frequency range 5–37 GHz. The molecules were synthesized in a supersonic expansion by the reaction of metal vapor, produced by laser ablation, with acetylene or DCCD. Use of target rods of the pure metal and a DC discharge immediately following the laser interaction region were significant factors in molecule production. Multiple rotational transitions were recorded for all species, except where only the J = 1 → 0 line was accessible (Li species). Quadrupole hyperfine interactions arising from the metal nuclei were resolved in each molecule, as well as those from the deuterium nucleus in the deuterated isotopologues. From a combined analysis with previous millimeter-wave data, refined rotational constants were determined for these species, as well as 7Li, 23Na, 39K, and D eQq parameters. The values of the metal quadrupole coupling constants are comparable to those of the alkali halides and hydroxides, indicating a similar degree of ionic character in the metal–ligand bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.