Abstract

The adsorption and coadsorption of selective catalytic reduction (SCR) reactants and reaction products on CuZSM-5-37 containing 11 wt.-% CuO have been studied by FTIR spectroscopy. The catalyst surface is characterized by both weak acidity and weak basicity as revealed by testing with probe molecules (CO2, NH3, H2O). NO2 adsorption results in formation of different kinds of nitrates. The same species are formed when NO is coadsorbed with oxygen at 180°C. NO adsorption at ambient temperature also leads to formation of nitrates as well as of Cu2+NO species. In the presence of oxygen the latter are converted according to the scheme: NO → N2O3 → N2O4 → NO2 → NO3. It is concluded that the surface nitrates are important intermediates in the SCR process. They are thermally stable and resistant towards interaction with CO2, N2, O2, and are only slightly affected by H2O and NO. However, they posses a high oxidation ability and are fully reduced by propane at 180°C. It is concluded that one of the most important roles of oxygen in SCR by hydrocarbons is to convert NOx into highly active surface nitrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.