Abstract

The current work describes thermotropic and kinetic Fourier transform infrared (FTIR) spectroscopy studies of lipid dynamics and domain formation in normal and ceramide (CER) deficient lipid samples designed as simple models of the stratum corneum (SC). For the first time, this work focuses on the time dependence of lipid reorganization and domain formation in CER deficient models. By utilizing deuterated fatty acid (FA) and simultaneously monitoring the methylene vibrational modes of both CER and FA chains these experiments follow the time evolution of lipid organization in these SC lipid models following an external stress. Kinetic and thermotropic experiments demonstrate differences in both CER and FA chain fluidity and ordered domain formation with decreased levels of CER. In the CER deficient model, the formation of CER orthorhombic domains is retarded compared to the normal model. Furthermore, there is little evidence of hexongally packed (or mixed) FA domains in the CER deficient model compared to the models of normal SC. These data demonstrate that barrier lipid organization, in terms of ceramide domain formation, is altered in the ceramide deficient model. This work highlights the successful development of an experimental methodology to study time dependent changes in lipid biophysics in simple SC model membranes and suggests this approach will prove useful for understanding some of the biophysical changes that underlie impaired physiological barrier function in diseased skin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.