Abstract

The molecular structure and solution-state molecular interactions in the popular non-steroidal anti-inflammatory drug, ketoprofen, are extensively studied with the aim of gaining a better understanding of the chemical behavior of its solution state and its connection to its nucleation pathway and crystallization outcome. Using as reference solid-state X-ray structures of enantiomeric and racemic forms of ketoprofen, a set of self-assembly models underpinned by density functional theory calculations has been considered for the analysis of spectroscopic data, infrared (IR) and vibrational circular dichroism (VCD), obtained for solutions of the samples as a function of composition and solvent. From our results it can be concluded that, contrary to the general belief for generic carboxylic acids, there are no cyclic dimeric structures of ketoprofen present in solution, but rather linear arrays made up of two (in high polar or diluted media) or more units (in low polar or low dilution media). This observation is in line with the idea that the weak contacts (other than H-bonding) would hold the key to molecular self-assembly, in agreement with recent studies on other aromatic carboxylic acids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.