Abstract
Due to its high price, increased consumption, and limited production, honey has been a main target for economically motivated adulteration (EMA). An approach combining Fourier-Transform infrared spectroscopy (FTIR) and chemometrics was evaluated to develop a rapid screening tool to detect potential EMA of honey with either rice or corn syrup. A single-class soft independent modeling of class analogy (SIMCA) model was developed using a diverse set of commercial honey products and an authentic set of honey samples collected at four different U.S. Department of Agriculture (USDA) honey sample collection locations. The SIMCA model was externally validated with a set of calibration-independent authentic honey, typical commercial honey control samples, and those spiked with rice and corn syrups in the 1–16% concentration range. The authentic honey and typical commercial honey test samples were correctly predicted with an 88.3% classification rate. High accuracy was found in predicting the rice and corn syrup spiked samples above the 7% concentration range, yielding 97.6% and 94.8% correct classification rates, respectively. This study demonstrated the potential for a rapid and accurate infrared and chemometrics method that can be used to rapidly screen for either rice or corn adulterants in honey in less than 5 min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.