Abstract
The two main ageing-inducing events in the collagenous tissues are the water loss and the formation of intermolecular crosslinks based on the reaction of collagen with matrix carbohydrates, following a mechanism known as non-enzymatic-glycation. With the aim to mimic the two deleterious processes for the protein structure, rat-tail collagen was submitted to hydration changes and allowed to interact with two sugars characterized by different reducing properties, D-glucose and D-ribose. Fourier transform infrared (FTIR) spectroscopy was employed to investigate the conformational changes induced in the protein by the two treatments by analyzing the subsequent spectra modifications. FTIR spectra monitored: i) the amplitude and position changes of the two characteristic absorption bands OH stretching and Amide I, in dependence on the humidity level: a significant hysteresis effect in the ν(OH) band (ν~3400 cm–1) amplitude of the protein dehydrated and then rehydrated to the initial relative humidity (aw=0.92- 0.06) may be related to the enhancement of the β-sheet fraction in the protein structure as revealed by the parallel modification in the Amide I band (ν~1650 cm–1); ii) the area of the carbohydrate double band peaking at 1080 cm–1 and 1031 cm–1, associated to the accumulation of the glycation products, depending on the sugar concentration and incubation time. The association of both sugars to collagen only minimally affects the protein secondary structure as revealed by Amide I band Gaussian analysis. The whole set of results suggests hints to hypothesize a self-assembly model for collagen molecules induced by ageing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biological Research - Bollettino della Società Italiana di Biologia Sperimentale
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.