Abstract

We describe a holographic microscope with a spatial resolution approaching the diffraction limit. The instrument uses a tiny drop of glycerol as a lens to create the spherically diverging reference illumination necessary for Fourier-transform holography. Measurement of the point-spread function, which is obtained by imaging a knife edge in dark-field illumination, indicates a transverse resolution of 1.4 microm with wavelength lambda = 514.5 nm. Longitudinal resolution is obtained from the holograms by the numerical equivalent of optical sectioning. We describe the method of reconstruction and demonstrate the microscope's capability with selected biological specimens. The instrument offers two unique capabilities: (1) it can collect three-dimensional information in a single pulse of light, avoiding specimen damage and bleaching; and (2) it can record three-dimensional motion pictures from a series of light pulses. The conceptual design is applicable to a broad range of wavelengths and we discuss extension to the x-ray regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.