Abstract

Ghost imaging based on the high-order correlation of optical field has developed rapidly and has been extended to the x-ray region. However, the limited flux leads to severe image deterioration. Here, an approach of Fourier-transform ghost imaging with super-Rayleigh speckles is proposed to realize high quality ghost imaging at low photon flux level. The super-Rayleigh speckles are designed by optimizing binary modulating screens based on the direct binary search algorithm. The experimental results show that the speckle contrast can be greatly enhanced and high visibility Fourier-transform diffraction pattern of the sample can be obtained. The sample's image in spatial domain is successfully achieved even if the detected photon level decreases to 0.1 photons/pixel. This method is of great importance for high-resolution imaging in the photon-limited scenarios, especially for laboratory x-ray systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call