Abstract

Let ν be a countably additive vector measure defined on the Borel subsets Open image in new window of a compact Hausdorff abelian group G. In this paper we define and study a vector valued Fourier transform and a vector valued convolution for functions which are (weakly) integrable with respect to ν. A form of the Riemann Lebesgue Lemma and a Uniqueness Theorem are established in this context. In order to study the vector valued convolution we discuss the invariance under reflection in G of these spaces of integrable functions. Finally we present a Young’s type inequality in this setting and several relevant examples, namely related with the vector measure associated to different important classical operators coming from Harmonic Analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.