Abstract

We present a new method to propagate rotating Bose–Einstein condensates subject to explicitly time-dependent trapping potentials. Using algebraic techniques, we combine Magnus expansions and splitting methods to yield any order methods for the multivariate and nonautonomous quadratic part of the Hamiltonian that can be computed using only Fourier transforms at the cost of solving a small system of polynomial equations. The resulting scheme solves the challenging component of the (nonlinear) Hamiltonian and can be combined with optimized splitting methods to yield efficient algorithms for rotating Bose–Einstein condensates. The method is particularly efficient for potentials that can be regarded as perturbed rotating and trapped condensates, e.g., for small nonlinearities, since it retains the near-integrable structure of the problem. For large nonlinearities, the method remains highly efficient if higher order p > 2 is sought. Furthermore, we show how it can be adapted to the presence of dissipation terms. Numerical examples illustrate the performance of the scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.