Abstract

An aberration correction method is introduced for 3D phase deconvolution microscopy. Our technique capitalizes on multiple illumination patterns to iteratively extract Fourier space aberrations, utilizing the overlapping information inherent in these patterns. By refining the point spread function based on the retrieved aberration data, we significantly improve the precision of refractive index deconvolution. We validate the effectiveness of our method on both synthetic and biological three-dimensional samples, achieving notable enhancements in resolution and measurement accuracy. The method's reliability in aberration retrieval is further confirmed through controlled experiments with intentionally induced spherical aberrations, underscoring its potential for wide-ranging applications in microscopy and biomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.