Abstract
Abstract We use Fourier–Mukai transform to compute the cohomology of the Picard bundles on the compactified Jacobian of an integral nodal curve $Y$. We prove that the transform gives an injective morphism from the moduli space of vector bundles of rank $r \ge 2$ and degree $d$ ($d$ sufficiently large) on $Y$ to the moduli space of vector bundles of a fixed rank and fixed Chern classes on the compactified Jacobian of $Y$. We show that this morphism induces a morphism from the moduli space of vector bundles of rank $r \ge 2$ and a fixed determinant of degree $d$ on $Y$ to the moduli space of vector bundles of a fixed rank with a fixed determinant and fixed Chern classes on the compactified Jacobian of $Y$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.