Abstract
Partial differential equations with random coefficients appear for example in reliability problems and uncertainty propagation models. Various approaches exist for computing the stochastic characteristics of the solution of such a differential equation. In this paper, we consider the spectral expansion approach. This method transforms the continuous model into a large discrete algebraic system. We study the convergence properties of iterative methods for solving this discretized system. We consider one-level and multi-level methods. The classical Fourier mode analysis technique is extended towards the stochastic case. This is done by taking the eigenstructure into account of a certain matrix that depends on the random structure of the problem. We show how the convergence properties depend on the particulars of the algorithm, on the discretization parameters and on the stochastic characteristics of the model. Numerical results are added to illustrate some of our theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.