Abstract
Timelimited functions and bandlimited functions play a fundamental role in signal and image processing. But by the uncertainty principles, a signal cannot be simultaneously time and bandlimited. A natural assumption is thus that a signal is almost time and almost bandlimited. The aim of this paper is to prove that the set of almost time and almost bandlimited signals is not excluded from the uncertainty principles. The transforms under consideration are integral operators with bounded kernels for which there is a Parseval Theorem. Then we define the wavelet multipliers for this class of operators, and study their boundedness and Schatten class properties. We show that the wavelet multiplier is unitary equivalent to a scalar multiple of the phase space restriction operator. Moreover we prove that a signal which is almost time and almost bandlimited can be approximated by its projection on the span of the first eigenfunctions of the phase space restriction operator, corresponding to the largest eigenvalues which are close to one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.