Abstract

In recent papers, the author and J. A. Wolf have developed the Plancherel theory of parabolic subgroups of real reductive Lie groups. This includes describing the irreducible unitary representations, computing the Plancherel measure, and-since parabolic groups are nonunimodular-explicating the (unbounded) Dixmier-Pukanszky operator that appears in the Plancherel formula. The latter has been discovered to be a special kind of pseudodifferential operator. In this paper, the author considers the problem of extending this analysis to parabolic subgroups of semisimple algebraic groups over an arbitrary local field. Thus far he has restricted his attention to Borel subgroups (i.e. minimal parabolics) in Chevalley groups (i.e. split semisimple groups). The results he has obtained are described in this paper for the case of the symplectic group. The final result is (perhaps surprisingly), to a large extent, independent of the local field over which the group is defined. Another interesting feature of the work is the description of the “pseudodifferential” Dixmier-Pukanszky operator in the nonarchimedean situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.