Abstract
We consider estimation of stochastic volatility models which are driven by a heavy-tailed innovation distribution. Exploiting the simple structure of the characteristic function of suitably transformed observations we propose an estimator which minimizes a weighted $$L_2$$ -type distance between the theoretical characteristic function of these observations and an empirical counterpart. A related goodness-of-fit test is also proposed. Monte-Carlo results are presented. The procedures are also applied to real data from the financial markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.