Abstract

An active terahertz wave imaging method is investigated for improved system simplicity, inexpensive implementation, and distance approximation. The proposed technique is composed of a single-pixel setup that allows acquiring the two-dimensional (2-D) Fourier transform intensity map of the imaged object and additional depth data using time of flight method. A raster scan is performed to achieve the object’s 2-D Fourier transform intensity and depth information. Iterative phase retrieval methods are employed to accomplish good image reconstruction using only the measured object’s Fourier transform magnitude. The proposed method uses a glow discharge detector (GDD) as its single millimeter wave pixel and offers a simple noncalibrating scheme for 2-D imaging and distance approximation. This work shows experimental results of using the GDD as a distance approximation detector and specifies the advantages, disadvantages, and constraints when using such a sensor. Basic aperture imaging (transmission imaging) experimental results are also shown, and complex aperture imaging simulations and their corresponding reconstructions are presented. Finally, both 2-D imaging and acquired depth data are fused into a single three-dimensional reconstructed image to reveal the potential of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.