Abstract

In an effort to enhance visualization of shock fronts associated with single explosive particle (diameter — 100μm) detonation, a Fourier holographic recording technique has been developed which relies on film non-linearities to greatly increase phaseobject visibility. The driving force behind this work is the investigation of detonation dynamics in dispersed particle explosives. These explosives, used for mine neutralization, are comprised of a fine, solid particulate dust which is dispersed as a cloud in the atmosphere over a given area. When detonation is initiated in some portion of the cloud, the ensuing detonation wave propagates throughout the entire cloud and results in an explosion, generating a tremendous pressure which serves to destroy or render useless any land mines present. Understanding the mechanism by which individual particles interact to sustain detonation in these solid dispersed particle explosives has been the research goal, and has led directly to the development of several holographic techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call