Abstract
Abstract In this paper, we show that the surface measure on the boundary of a convex body of everywhere positive Gaussian curvature does not admit a Fourier frame. This answers a question proposed by Lev and provides the 1st example of a uniformly distributed measure supported on a set of Lebesgue measure zero that does not admit a Fourier frame. In contrast, we show that the surface measure on the boundary of a polytope always admits a Fourier frame. We also explore orthogonal bases and frames adopted to sets under consideration. More precisely, given a compact manifold $M$ without a boundary and $D \subset M$, we ask whether $L^2(D)$ possesses an orthogonal basis of eigenfunctions. The non-abelian nature of this problem, in general, puts it outside the realm of the previously explored questions about the existence of bases of characters for subsets of locally compact abelian groups. This paper is dedicated to Alexander Olevskii on the occasion of his birthday. Olevskii’s mathematical depth and personal kindness serve as a major source of inspiration for us and many others in the field of mathematics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.