Abstract
Motivated by string theory scattering amplitudes that are invariant under a discrete U-duality, we study Fourier coefficients of Eisenstein series on Kac– Moody groups. In particular, we analyse the Eisenstein series on E9(R), E10(R) and E11(R) corresponding to certain degenerate principal series at the values s = 3/2 and s = 5/2 that were studied in [1]. We show that these Eisenstein series have very simple Fourier coefficients as expected for their role as supersymmetric contributions to the higher derivative couplings R 4 and @ 4 R 4 coming from 1/2-BPS and 1/4-BPS instantons, respectively. This suggests that there exist minimal and next-to-minimal unipotent automorphic representations of the associated Kac–Moody groups to which these special Eisenstein series are attached. We also provide complete explicit expressions for degenerate Whittaker vectors of minimal Eisenstein series on E6(R), E7(R) and E8(R) that have not appeared in the literature before.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.