Abstract

We build two families of inspiral waveforms for precessing binaries on eccentric orbits in the Fourier domain. To achieve this, we use a small eccentricity expansion of the waveform amplitudes in order to separate the periastron precession timescale from the orbital timescale, and use a shifted uniform asymptotics transformation to compute the Fourier transform in the presence of spin-induced precession. We show that the resulting waveforms can yield a median faithfulness above 0.993 when compared to an equivalent time domain waveform with an initial eccentricity of $e_0 \approx 0.3$. We also show that when the spins are large, using a circular waveform can potentially lead to significant biases in the recovery of the parameters, even when the system has fully circularized, particularly when the accumulated number of cycles is large. This is an effect of the residual eccentricity present when the objects forming the binary have nonvanishing spin components in the orbital plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.