Abstract
Lehmer's 1947 conjecture on whether $\tau(n)$ vanishes is still unresolved. In this context, it is natural to consider variants of Lehmer's conjecture. We determine many integers that cannot be values of $\tau(n)$. For example, among the odd numbers $\alpha$ such that $|\alpha|<99$, we determine that $$\tau(n) \notin \{-9, \pm 15, \pm 21, -25, -27, -33, \pm 35, \pm 45, \pm 49, -55, \pm 63, \pm 77, -81, \pm 91 \}.$$ Moreover, under GRH, we have that $\tau(n) \neq -|\alpha|$ and that $\tau(n) \notin \{9,25,27,39,$ $75,81\}.$ We also consider the level 1 Hecke eigenforms in dimension 1 spaces of cusp forms. For example, for $\Delta E_4 = \sum_{n = 1}^{\infty} \tau_{16}(n)q^n$, we show that \begin{align*}\tau_{16}(n) \notin &\{\pm \ell: 1\leq \ell \leq 99, \ell \text{ is odd}, \ell \neq 33,55,59,67,73,83,89,91\} & \quad \quad \quad \quad \quad \cup \{-33,-55,-59,-67,-89,-91\}.\end{align*} Furthermore, we implement congruences given by Swinnerton-Dyer to rule out additional large primes which divide numerators of specific Bernoulli numbers. To obtain these results, we make use of the theory of Lucas sequences, methods for solving high degree Thue equations, Barros' algorithm for solving hyperelliptic equations, and the theory of continued fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.