Abstract

Let \({{\mathfrak f}}\) be a cusp form of half integral weight whose Fourier coefficients \({{\mathfrak a}_{\mathfrak f}(n)}\) are all real. We study the sign change problem of \({{\mathfrak a}_{\mathfrak f}(n)}\) , when n runs over some specific sets of integers. Lower bounds of the best possible order of magnitude are established for the number of those coefficients that have the same signs. These give an improvement on some recent results of Bruinier and Kohnen (Modular forms on Schiermonnikoong. Cambridge University Press, Cambridge 57–66, 2008) and Kohnen (Int. J. Number. Theory 6:1255–1259, 2010).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.