Abstract
In the beginning of the paper, we review the summation formulas for the Fourier coefficients of holomorphic cusp forms for γ, γ=SL(2,ℤ), associated with L-functions of three and four Hecke eigenforms. Continuing the known works on the L-functions Lf,ϕ,ψ(s) of three Hecke eigenforms, we prove their new properties in the special case of Lf,ϕ,ψ(s). These results are applied to proving an analogue of the Siegel theorem for the L-function Lf(s) of the Hecke eigenform f(z) for γ (with respect to weight) and to deriving a new summation formula. Let f(z) be a Hecke eigenform for γ of even weight 2k with Fourier expansion\(f(z) = \Sigma _{n = 1}^\infty a(n)e^{2\pi inz} \). We study a weight-uniform analogue of the Hardy problem on the behavior of the sum ⌆p≤xa(p) log p and prove new estimates from above for the sum ⌆n≤xa(F(n))2, where F(x) is a polynomial with integral coefficients of special form (in particular, F(x) is an Abelian polynomial). Finally, we obtain the lower estimate $$L_4 (1) + |L'_4 (1)| \gg \frac{1}{{(\log k)^c }},$$ where L4(s) is the fourth symmetric power of the L-function Lf(s) and c is a constant. Bibliography: 43 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.