Abstract

Inverse synthetic aperture radar (ISAR) image formation is a problem that has been studied for many decades. Despite the effort made by many researchers and practitioners, it is still an open problem as it involves non-trivial aspects both in terms of geometry and scattering mechanisms. In this study, the authors introduce a new interpretation of classical ISAR signal modelling, based on two-dimensional polynomials, providing an alternative perspective that permits the in-depth investigation of the problem of ISAR image formation when using a Fourier transform-based approach. The interpretation of target motion compensation and image autofocus are connected through a mathematical formulation that explains in depth what can and should be compensated in the received signal prior to applying the Fourier transform and therefore forming the ISAR image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.