Abstract
Porphyrins are valuable constituents in optoelectronic, catalytic, and other applications, yet control of intermolecular π-π stacking is invariably essential to attain the desired properties. Superstructures built onto the porphyrin, often via meso-aryl groups, can afford facial encumbrance that suppresses π-π stacking, although some molecular designs have provided insufficient facial coverage and many have entailed cumbersome syntheses. In this study, a copper(II) porphyrin bearing four meso substituents, namely, {10,20-bis[2,6-bis(octyloxy)phenyl]-5,15-dibromoporphinato}copper(II), [Cu(C64H82Br2N4O4)], was prepared by metalation of the corresponding free-base porphyrin and was characterized by single-crystal X-ray diffraction. The crystal structure reveals a dihedral angle of 111.1 (2)° for the plane of the meso-aryl group relative to the plane of the porphyrin, with both aryl groups tilted in the same direction. Each of the four octyloxy groups exhibits a gauche conformation for the -OCH2CH2- unit but is extended with four or five anti (-CH2CH2-/H) conformations thereafter, causing each octyl group to span the dimension of the macrocycle. In a global frame of reference where the two Br atoms define the north/south poles and the two aryl groups are at antipodes on the equator, two octyl groups of one aryl unit project over the northern hemisphere (covering pyrroles A and B), whereas those of the other aryl unit project over the southern hemisphere (covering pyrroles C and D). Together, the four octyl groups ensheath the two faces of the porphyrin in a self-wrapped assembly. The closest approach of the Cu atom to an octyl methylene C atom (position 6) is 3.5817 (18) Å, the mean separations of neighboring porphyrin planes are 8.059 (4) and 4.693 (8) Å along the a and c axes, respectively, and the center-to-center distances between the Cu atoms of neighboring porphyrins are 10.2725 (4), 12.2540 (6), and 12.7472 (6) Å along the a, b, and c axes, respectively. The Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots provide information concerning contact interactions in the supramolecular assembly of the solid crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section C, Structural chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.