Abstract

We derive a necessary and sufficient condition for Poincaré Lie superalgebras in any dimension and signature to be isomorphic. This reduces the classification problem, up to certain discrete operations, to classifying the orbits of the Schur group on the vector space of superbrackets. We then classify four-dimensional [Formula: see text] supersymmetry algebras, which are found to be unique in Euclidean and in neutral signature, while in Lorentz signature there exist two algebras with R-symmetry groups [Formula: see text] and [Formula: see text], respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.