Abstract

U–Pb petrochronology of deep crustal xenoliths and outcrops across northeastern Tanzania track the thermal evolution of the Mozambique Belt and Tanzanian Craton following the Neoproterozoic East African Orogeny (EAO) and subsequent Neogene rifting. At the craton margin, the upper–middle crust record thermal quiescence since the Archean (2.8–2.5 Ga zircon, rutile, and apatite in granite and amphibolite xenoliths). The lower crust of the craton documents thermal pulses associated with Neoarchean ultra-high temperature metamorphism (ca. 2.64 Ga, > 900 °C zircon), the EAO (600–500 Ma rutile), and fluid influx during rifting ( 650 °C (above Pb closure of rutile and apatite) at the time of eruption. Zoned titanite records growth during cooling of the lower crust at 550 Ma, followed by fluid influx during slow cooling and exhumation (0.1–1 °C/Myr after 450 Ma). Permissible lower-crustal temperatures for the craton and orogen suggest variable mantle heat flow through the crust and reflect differences in mantle lithosphere thickness rather than advective heating from rifting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.