Abstract

Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) tends to show higher diagnostic accuracy than other modalities. There is a demand for computer-assisted detection (CAD) software for Gd-EOB-DTPA-enhanced MRI. Segmentation with high accuracy is important for CAD software. We propose a liver segmentation method for Gd-EOB-DTPA-enhanced MRI that is based on a four-dimensional (4D) fully convolutional residual network (FC-ResNet). The aims of this study are to determine the best combination of an input image and output image in our proposed method and to compare our proposed method with the previous rule-based segmentation method. We prepared a five-phase image set and a hepatobiliary phase image set as the input image sets to determine the best input image set. We also prepared a labeled liver image and labeled liver and labeled body trunk images as the output image sets to determine the best output image set. In addition, we optimized the hyperparameters of our proposed model. We used 30 cases to train our model, 10 cases to determine the hyperparameters of our model, and 20 cases to evaluate our model. Our network with the five-phase image set and the output image set of labeled liver and labeled body trunk images showed the highest accuracy. Our proposed method showed higher accuracy than the previous rule-based segmentation method. The Dice coefficient of the liver region was 0.944 ± 0.018. Our proposed 4D FC-ResNet showed satisfactory performance for liver segmentation as preprocessing in CAD software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.