Abstract

Anisotropic mesh adaptation is important for accurately simulating physical phenomena at reasonable computational costs. Previous work in anisotropic mesh adaptation has been restricted to studies in two- or three-dimensional computational domains. However, in order to accurately simulate time-dependent physical phenomena in three dimensions, a four-dimensional mesh adaptation tool is needed. This work develops a four-dimensional anisotropic mesh adaptation tool to support time-dependent three-dimensional numerical simulations. Anisotropy is achieved through the use of a background metric field and the mesh is adapted using a dimension-independent cavity framework. Metric-conformity – in the sense of edge lengths, element quality and element counts – is effectively demonstrated on four-dimensional benchmark cases within a unit tesseract in which the background metric is prescribed analytically. Next, the metric field is optimized to minimize the approximation error of a scalar function with discontinuous Galerkin discretizations on four-dimensional domains. We demonstrate that this four-dimensional mesh adaptation algorithm achieves optimal element sizes and orientations. To our knowledge, this is the first presentation of anisotropic four-dimensional meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.