Abstract

Using the multipolar expansion of electrostatic and magnetostatic potential energies, we characterize the long-range interactions between two weakly-bound diatomic molecules, taking as an example the paramagnetic Er2 Feshbach molecules which were produced recently. Since inside each molecule individual atoms conserve their identity, the intermolecular potential energy can be expanded as the sum of pairwise atomic potential energies. In the case of Er2 Feshbach molecules, we show that the interaction between atomic magnetic dipoles gives rise to the usual term of the multipolar expansion, where R is the intermolecular distance, but also to additional terms scaling as and so on. Those terms are due to the interaction between effective molecular multipole moments, and are strongly anisotropic with respect to the orientation of the molecules. Similarly, the atomic pairwise van der Waals interaction results in ... terms in the intermolecular potential energy. By calculating the reduced electric-quadrupole moment of erbium ground level a.u., we also demonstrate that the electric–quadrupole interaction energy is negligible with respect to the magnetic dipole and van der Waals interaction energies. The general formalism presented in this article can be applied to calculate the long-range potential energy between arbitrary charge distributions composed of almost free subsystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.