Abstract
Changes in longitudinal relaxation time (T1) and proton density (PD) are sensitive indicators of microstructural alterations associated with various central nervous system diseases as well as brain maturation and aging. In this work, we introduce a new approach for rapid and accurate high-resolution (HR) or ultra HR (UHR) mapping of T1 and apparent PD (APD) of the brain with correction of radiofrequency field, B1, inhomogeneities. The four-angle method (FAM) uses four spoiled-gradient recalled-echo (SPGR) images acquired at different flip angles (FA) and short repetition times (TRs). The first two SPGR images are acquired at low-spatial resolution and used to accurately map the active B1+ field with the recently introduced steady-state double angle method (SS-DAM). The estimated B1+ map is used in conjunction with the two other SPGR images, acquired at HR or UHR, to map T1 and APD. The method is evaluated with numerical, phantom, and in-vivo imaging measurements. Furthermore, we investigated imaging acceleration methods to further shorten the acquisition time. Our results indicate that FAM provides an accurate method for simultaneous HR or UHR mapping of T1 and APD in human brain in clinical high-field MRI. Derived parameter maps without B1+correction suffer from large inaccuracies, but this issue is well-corrected through use of the SS-DAM. Furthermore, the use of SPGR imaging with short TR and phased-array coil acquisition permits substantial imaging acceleration and enables robust HR or UHR T1 and APD mapping in a clinically acceptable time frame, with whole brain coverage obtained in less than 2 min or 5 min, respectively. The method exhibits high reproducibility and benefits from the use of the conventional SPGR sequence, available in all preclinical and clinical MRI machines, and very simple modeling to address a critical outstanding issue in neuroimaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.