Abstract

Attenuation of ultrasound often follows near power laws which cannot be modeled with conventional viscous or relaxation wave equations. The same is often the case for shear wave propagation in tissue also. More general temporal memory operators in the wave equation can describe such behavior. They can be justified in four ways: 1) Power laws for attenuation with exponents other than two correspond to the use of convolution operators with a temporal memory kernel which is a power law in time. 2) The corresponding constitutive equation is also a convolution, often with a temporal power law function. 3) It is also equivalent to an infinite set of relaxation processes which can be formulated via the complex compressibility. 4) The constitutive equation can also be expressed as an infinite sum of higher order derivatives. An extension to longitudinal waves in a nonlinear medium is also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.