Abstract

We describe possibilities of spontaneous, degenerate four-wave mixing (FWM) processes in spin–orbit coupled Bose–Einstein condensates. Phase matching conditions (i.e., energy and momentum conservation laws) in such systems allow one to identify four different configurations characterized by involvement of distinct spinor states in which such a process can take place. We derived these conditions from first principles and then illustrated dynamics with direct numerical simulations. We found, among others, the unique configuration, where both probe waves have smaller group velocity than pump wave and proved numerically that it can be observed experimentally under proper choice of the parameters. We also reported the case when two different FWM processes can occur simultaneously. The described resonant interactions of matter waves is expected to play an important role in the experiments of BEC with artificial gauge fields. Beams created by FWM processes are an important source of correlated particles and can be used in the experiments testing quantum properties of atomic ensembles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.