Abstract

The four-wave mixing process during a single-color femtosecond filamentation in the molecular gas is observed experimentally. The role of the seed is represented by the self-shifted to infrared region Raman bullet and the new blue-shifted component burns up as a result of the interaction between the Raman bullet and the reservoir radiation. The blue-shifted component propagates along the beam axis. The theoretical analysis of the four-wave mixing process synchronism shows that the on-axis forward propagation of the blue-shifted component occurs when the plasma concentration is higher than a certain threshold (3.3 × 1016 cm−3 at the fundamental wavelength of 800 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.