Abstract

BackgroundIron deficiency anaemia is a worldwide health problem in which environmental, physiologic and genetic factors play important roles. The associations between iron status biomarkers and single nucleotide polymorphisms (SNPs) known to be related to iron metabolism were studied in menstruating women.MethodsA group of 270 Caucasian menstruating women, a population group at risk of iron deficiency anaemia, participated in the study. Haematological and biochemical parameters were analysed and 10 selected SNPs were genotyped by minisequencing assay. The associations between genetic and biochemical data were analysed by Bayesian Model Averaging (BMA) test and decision trees. Dietary intake of a representative subgroup of these volunteers (n = 141) was assessed, and the relationship between nutrients and iron biomarkers was also determined by linear regression.ResultsFour variants, two in the transferrin gene (rs3811647, rs1799852) and two in the HFE gene (C282Y, H63D), explain 35% of the genetic variation or heritability of serum transferrin in menstruating women. The minor allele of rs3811647 was associated with higher serum transferrin levels and lower transferrin saturation, while the minor alleles of rs1799852 and the C282Y and H63D mutations of HFE were associated with lower serum transferrin levels. No association between nutrient intake and iron biomarkers was found.ConclusionsIn contrast to dietary intake, these four SNPs are strongly associated with serum transferrin. Carriers of the minor allele of rs3811647 present a reduction in iron transport to tissues, which might indicate higher iron deficiency anaemia risk, although the simultaneous presence of the minor allele of rs1799852 and HFE mutations appear to have compensatory effects. Therefore, it is suggested that these genetic variants might potentially be used as markers of iron deficiency anaemia risk.

Highlights

  • Iron deficiency is one of the leading risk factors for disability and mortality worldwide, affecting both developing and developed countries with major consequences for human health as well as social and economic improvement

  • The associations between iron status biomarkers and 10 single nucleotide polymorphisms (SNPs) known to be related with iron metabolism were studied in menstruating women, a population group at risk of iron deficiency anaemia

  • There were no significant differences between iron status biomarkers of the total group and the subgroup of volunteers whose dietary intake was assessed (Table 1)

Read more

Summary

Introduction

Iron deficiency is one of the leading risk factors for disability and mortality worldwide, affecting both developing and developed countries with major consequences for human health as well as social and economic improvement. Iron deficiency anaemia is caused by a wide variety of factors that can be isolated, but more often coexist [2]. It results from any situation in which dietary iron intake does not meet the body’s demands. It is well established that in a situation of iron-deficiency the supply of iron to transferrin is compromised, increasing the serum levels of the protein while transferrin saturation and total iron binding capacity are decreased; this leads to ferritin stores being progressively diminished [2]. Iron deficiency anaemia is a worldwide health problem in which environmental, physiologic and genetic factors play important roles. The associations between iron status biomarkers and single nucleotide polymorphisms (SNPs) known to be related to iron metabolism were studied in menstruating women

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call