Abstract

Four thiol-modifying compounds were used to inhibit murine lymphocyte mitogenesis. The compounds were a copper sulfate/ O-phenanthroline complex (CuP) to oxidize surface thiols, N-ethyl maleimide (NEM) to alkylate surface and intracellular thiols, d,l- buthionine-S,R- sulfoximine (BSO) to prevent synthesis of glutathione, and hydrogen peroxide, which reacts with various cellular constituents, including sulfhydryls. Splenic lymphocytes were incubated with one of the four compounds, washed, and then stimulated with the B cell mitogen, LPS, or the T cell mitogen, Con A. In spite of their differing chemical reactivities and differing effects on cell viability, lipids, and total, protein, and non-protein thiols, the four sulfhydryl-modifying compounds had very similar effects on the kinetics and inhibition of lymphocyte growth. All compounds had complex effects on mitogenesis, causing enhanced, delayed, or inhibited tritiated thymidine incorporation. Although the total thiol contents of untreated T cells and B cells were found to be equivalent, the LPS response consistently was inhibited by lower concentrations than the Con A response, suggesting that B cells were more sensitive than T cells to thiol modification. To compare compounds the efficiency of inhibition was determined by functionally relating reductions in mitogenesis with reductions in thiol content of the cells. The compounds differed in inhibitory efficiency; thus, damage to some thiols must be more important than damage to others. CuP ablated mitogenesis with the least change in thiol content. Therefore, surface sulfhydryls appear critical in lymphocyte mitogenesis. With all compounds inhibition of mitogenesis occurred over a very narrow range of thiol content, suggesting that the thiols important in inhibition were few in number relative to the total thiol content of the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call