Abstract

The authors theoretically demonstrate the implementation of a low-power 4-state universal logic gate (NOR) using a linear array of three dipole-coupled magnetostrictive-piezoelectric multiferroic nanomagnets (e.g. Ni/PZT) with biaxial magnetocrystalline anisotropy. The two peripheral nanomagnets in the array encode the 4-state input bits in their magnetization orientations and the central nanomagnet's magnetization orientation represents the output bit. Numerical simulations are performed to confirm that the 4-state output bit is the Boolean NOR function of the two 4-state inputs bits when the array reaches its ground state. A voltage pulse alternating between −0.2 and +0.2 V, applied to the piezoelectric layer of the central nanomagnet, generates alternating tensile and compressive stress in its magnetostrictive layer. This drives the array to the correct ground state where dipole interaction between the magnets ensures that the output is the NOR function of the input. For the system considered, the gate operation is executed while dissipating only ∼33 000 kT (0.138 fJ) of energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.